Testing a dual-modality system that combines full-field digital mammography and automated breast ultrasound

ABSTRACT

Purpose: The aim of this study was to test a novel dual-modality imaging system that combines full-field digital mammography (FFDM) and automated breast ultrasound (ABUS) in a single platform. Our Aceso system, named after the Greek goddess of healing, was specifically designed for the early detection of cancer in women with dense breast tissue.

Materials and Methods: Aceso was first tested using two industry standards: a Contrast Detail Mammography (CDMAM) phantom as endorsed by European Reference Organisation for Quality Assured Breast Screening and Diagnostic Services was used to assess the FFDM images; and the CIRS 040GSE ultrasound phantom was imaged to evaluate the quality of the ABUS images. In addition, 58 women participated in a clinical trial: 51 were healthy volunteers aged between 40 and 65, while 7 were patients referred by the breast clinic, 6 of whom had biopsy-proven breast cancer.

Results: The CDMAM tests showed that the FFDM results were “acceptable” but fell short of “achievable” which was attributed to the low dose used. The ABUS images had good depth penetration (80 mm) and adequate axial resolution (0.5 mm), but the lateral resolution of 2 mm was judged to be too coarse. In a 42-year-old volunteer with extremely dense breast tissue, the ABUS modality detected a lesion (a benign cyst) that was mammographically occult in the FFDM image. For a 73-year-old patient with fatty breasts, a malignant lesion was successfully detected and co-registered in the FFDM and ABUS images. On average, each woman spent less than 1 min in the acquisition room.

Conclusions: While there is room for improvement in the quality of both the FFDM and ABUS images, Aceso has demonstrated its ability to acquire clinically meaningful images for a range of women with varying breast densities and, therefore, has potential as a screening device.

© 2015 Elsevier Inc. All rights reserved.
The strongest evidence to date supporting the use of FFDM followed by ABUS as a screening tool has recently been published by Giuliano and Giuliano [14]. In a study of 3418 women with mammographically dense breasts, the authors showed that the addition of ABUS resulted in the detection of 12.3 per 1000 breast cancers compared to 4.6 per 1000 by mammography alone. Sensitivity increased from 76.0% to 97.7% while specificity increased from 98.2% to 99.7%. The potential for combining mammography and ultrasound was first hinted 30 years ago during the analogue imaging era [15]. From a clinical point of view, a screening instrument that acquired both FFDM and ABUS images would make a significant contribution to the detection of breast cancer.

The ideal functional attributes of a dual-modality system should include (a) breast to be in the same orientation and degree of compression when X-ray and ultrasound images are obtained; (b) both sets of images to be acquired simultaneously so as to minimize the time the woman’s breast is held stationary; (c) ABUS that images the whole breast in a single scan; (d) both modalities to acquire images in 3D; and (e) radiation dose exposure to the woman is minimized. In reviewing the field of dual-modality imaging—combining X-rays and ultrasound—there are four basic design concepts that have been described in the literature.

In Design 1, X-ray images are captured by a flat panel digital detector located beneath the breast and an ultrasound probe located above the breast [16–18]. This probe, which is moved under automated control on top of the compressor, is positioned between the X-ray tube and the

Fig. 1. The Aceso dual-modality imaging system consists of: (a) an acquisition workstation that includes (b) an X-ray generator, (c) an iPad as the user interface, and (d) a lead-shielded glass screen; (e) a pair of wireless foot pedals; (f) a gantry that includes (g) an ultrasound beam former, and (h) a Mac Mini system computer; and (i) a C-arm that houses (j) an X-ray tube, (k) a display screen, (l) an instrumented compression paddle, and (m) a HSBP. The HSBP incorporates both the digital X-ray camera and the linear ultrasound transducer submerged in mineral oil.

Fig. 2. The Aceso dual-modality system as installed at the UCT for the clinical trial: (a) complete system; and (b) view as seen by the patient, showing the digital X-ray camera and the ultrasound transducer in the home position.

Fig. 3. Definition of the Aceso’s three-dimensional coordinate system, showing the origin embedded at pixel 1 of the digital X-ray camera. Note that the camera and ultrasound transducer are parallel to one another, with the transducer offset by 20 mm in the y direction.
breast. Because flat-panel detectors suffer from scatter problems [19], the radiation exposure to the patient is higher than optimal. In Design 2, researchers from the University of Michigan and GE Healthcare have essentially adapted Design 1 and added digital breast tomosynthesis (DBT), a technology that enables 3D images of the breast to be reconstructed [20–24]. In a study of 51 patients with biopsy-proven masses, Padilla et al. [25] found no significant difference in receiver operating characteristic performance when ABUS was added to DBT. Design 3 is based on an FFDM system that uses a slot-scanning approach to acquire a planar X-ray image [26]. Since the X-ray detector moves beneath the breast platform, it is possible to locate the ultrasound probe parallel to the X-ray detector [27,28]. Because the detector and the probe are both beneath the breast platform, it is possible to acquire the two images simultaneously, while the slot-scanning geometry reduces scatter and therefore minimizes radiation exposure to the patient [29]. The researchers were unable to solve the problem of acoustically coupling the probe to the breast, but they were able to co-register the FFDM and ABUS images [30]. Design 4 requires the patient to lie on her stomach in a prone position with her breast protruding through an opening in the horizontal support [31]. Both the X-ray and ultrasound acquisition systems are located beneath the support and rotate around the breast, enabling the capture of 3D images in both modalities. Although the method of acquiring 3D X-ray images could expose the patient to an unnecessarily high radiation dose [32], Koning recently received Food & Drug Administration (FDA) approval for their breast Computer Tomography system based on a clinical trial [33].

Table 1: Definition of parameters recommended by the FDA to judge the quality of FFDM images. Source: www.fda.gov/RegulatoryInformation/Guidances/ucm107552.htm

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast positioning</td>
<td>Assess coverage of the breast on CC and MLO views</td>
</tr>
<tr>
<td>Exposure</td>
<td>Assess visualization of the adipose and fibroglandular tissues and visualization of breast tissue underlying the pectoralis muscle</td>
</tr>
<tr>
<td>Breast compression</td>
<td>Assess overlapping breast structures, uniformity of exposure of fibroglandular tissues, adequacy of penetration of thicker portions, exposure of thinner areas, and motion unsharpness</td>
</tr>
<tr>
<td>Image contrast</td>
<td>Assess differentiation of subtle tissue density differences</td>
</tr>
<tr>
<td>Sharpness</td>
<td>Assess the edges of fine linear structures, tissue borders, and benign calcifications</td>
</tr>
<tr>
<td>Tissue visibility</td>
<td>Assess the tissue visibility on the skin line</td>
</tr>
<tr>
<td>Noise</td>
<td>Assess noise obscuring breast structures or suggestive of structures not actually present</td>
</tr>
<tr>
<td>Artifacts</td>
<td>Assess artifacts due to image processing, detector failure, and other factors external to the breast</td>
</tr>
<tr>
<td>Image quality</td>
<td>Assess the overall clinical image quality</td>
</tr>
</tbody>
</table>

Fig. 4. Data for the CDMAM phantom generated by the EUREF software package (www.euref.org). The threshold gold thickness has been plotted as a function of detail diameter, with both axes using a logarithmic scale. The Aceso data are based on eight sequential X-ray images (at 31 kV, 27 mAs, 2.1 mGy) and may be compared with the EUREF standards of acceptable and achievable [37].

Fig. 5. The CIRS 040GSE ultrasound phantom: (a) template showing the various targets and (b) data captured by the ultrasound transducer during the clinical trial.

2. Materials and methods

2.1. System overview

Our dual-modality Aceso system, named after the Greek goddess of healing, is based on Design Concept 3, where FFDM is implemented using a slot-scanning approach [34], and ABUS is accomplished by locating the ultrasound transducer parallel to the X-ray detector [35]. Our slot-scanning geometry differs from the Fischer system [26–28] in that the X-ray tube is stationary and a moving collimator sweeps the fan beam across the field of view [35]. As seen in Fig. 1, Aceso consists of

Table 2: Mean values for the 58 subjects (51 healthy volunteers and 7 patients), including age, 12 FFDM parameters as assessed by the radiologist (QSH), and the time taken by the radiographer with each subject in the image acquisition room

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>50.4</td>
</tr>
<tr>
<td>Breast positioning</td>
<td>CC</td>
</tr>
<tr>
<td>Exposure</td>
<td>Adipose</td>
</tr>
<tr>
<td>Breast compression</td>
<td>0.48</td>
</tr>
<tr>
<td>Image contrast</td>
<td>0.95</td>
</tr>
<tr>
<td>Sharpness</td>
<td>0.97</td>
</tr>
<tr>
<td>Tissue visibility</td>
<td>0.98</td>
</tr>
<tr>
<td>Noise</td>
<td>0.03</td>
</tr>
<tr>
<td>Artifacts</td>
<td>0.50</td>
</tr>
<tr>
<td>Image quality</td>
<td>0.93</td>
</tr>
<tr>
<td>Time (min:s)</td>
<td>10:57</td>
</tr>
</tbody>
</table>
an acquisition workstation that includes an X-ray generator, an iPad as the user interface, and a lead-shielded glass screen; a pair of wireless foot pedals; a gantry that includes an ultrasound beam former and a Mac Mini system computer; and a C-arm that houses an X-ray tube, a display screen, an instrumented compression paddle, and a hermetically sealed breast platform (HSBP). Photographs of the Aceso system, as used in the clinical trial, are seen in Fig. 2.

The HSBP accommodates both the digital X-ray camera and the ultrasound transducer that are able to move independently on two separate rail carriages. Both the camera and the transducer, together with two motors controlling their movement, are immersed in mineral oil in the HSBP [36]. This fluid, together with the upper surface of the HSBP that is made from 6-mm thick TPX (Polymethylpentene) [23], is designed to enhance the acoustic coupling between the ultrasound transducer and the breast. The size of the TPX plate is 230 mm in the anterior direction (i.e., away from the patient’s chest wall) by 285 mm in the medio-lateral (i.e., scanning) direction. The custom-designed camera, which is hermetically sealed, utilizes a Charge-Coupled Device (CCD) sensor (8,160 × 562 pixels, with a pixel size of 27 μm) and operates in time-delayed integration mode [26]. The ultrasound transducer is 128 mm in length, has an element pitch of 1 mm (i.e., there are 128 elements), and a centre frequency of 3.5 MHz. The centre lines of the X-ray camera and the ultrasound transducer are offset by 20 mm.

A right-handed coordinate system is used: the x-axis is in the anterior direction, the y-axis is from right to left, while the z-axis is upward and orthogonal to the breast platform. The origin of the system is located at the first pixel of the X-ray camera when the camera is in its home position (see Fig. 3). When dual-modality mode is implemented, the ultrasound transducer begins to move first at a constant speed of 10 mm/s, acquiring B-mode images of the breast in the sagittal (x–z) plane at intervals of 1 mm. As the ultrasound transducer reaches approximately three quarters of the way along its track (at 150 mm, reached after 15 s), the X-ray camera begins to move at a constant speed of 40.5 mm/s, acquiring its image of the breast in the horizontal (x–y) plane. Thus, for the final 6 to 8 s of image acquisition, the two modalities are operating simultaneously, meaning that the total acquisition time is limited to 25 s. There are 230 ABUS images gathered in a single scan (field of view 128 mm × 89 mm, recorded as an 8-bit gray scale image of 810 × 562 pixels) and a single FFDM image (field of view 224.1 mm × 220.3 mm, recorded as a 16-bit gray scale image of 4150 × 4080 pixels). All images are saved in standard Digital Imaging and Communications in Medicine (DICOM) format with header information that enables the ABUS and FFDM images to be co-registered using the coordinate system defined in Fig. 3.

2.2. Phantom testing

Two phantoms were used for evaluating the dual-modality Aceso system prior to clinical testing: the Contrast Detail Mammography (CDMAM) test object for assessing digital mammography systems that is manufactured by Artinis Medical Systems (Einsteinweg 17, Etk, The Netherlands) and the Model 040GSE multitissue ultrasound phantom manufactured by Computerized Imaging Reference Systems (CIRS) (2428 Almeda Avenue, Norfolk, VA, USA). The CDMAM phantom is part of the European guidelines for image quality control in mammography [37] and involves the determination of threshold contrast visibility using gold disks of different thicknesses (between 2.0 and 0.03 μm) and a range of diameters (between 2.0 and 0.06 mm). Software to process the CDMAM images is freely available from the European Reference Organisation for Quality Assured Breast Screening and Diagnostic Services (EUREF) Web site (www.euref.org). The CIRS Model 040GSE phantom is constructed from Zerdine, which simulates the acoustic properties of soft human tissue, and consists of a series of wire targets that are made from nylon of diameter 0.1 to 0.08 mm and appear as bright dots, gray scale disks to assess contrast sensitivity at two depths, elasticity targets with a range of stiffnesses from 10 to 60 kPa, and anechoic stepped cylinders to mimic small cysts.

2.3. Subjects

Fifty-one healthy volunteer subjects were recruited through the human resources department of the University of Cape Town (UCT). A further seven patients, six with biopsy-confirmed breast cancer, were recruited through the breast clinic at Groote Schuur Hospital. The study was approved by the Human Research Ethics Committee of UCT’s Faculty of Health Sciences, and written, informed consent was obtained from all subjects prior to participation in the study. The volunteers were aged between 40 and 65 years and had no prior history of

Table 3

<table>
<thead>
<tr>
<th>Patient</th>
<th>Density</th>
<th>FFDM findings</th>
<th>ABUS findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>Irregular mass (3 cm) in R breast with distortion, consistent with invasive carcinoma. Microcalcifications seen in close proximity.</td>
<td>Ultrasound confirms suspicious mass, with posterior acoustic enhancement.</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Irregular mass (2 × 1.8 cm) in L breast with architectural distortion. No associated microcalcifications seen.</td>
<td>The FFDM and ABUS images are complimentary.</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Small dense breasts with no discrete spiculations or architectural distortion. No malignant microcalcifications.</td>
<td>Ultrasound shows normal tissue with no visible solid or cystic masses.</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>Large (2.5 cm) lobulated mass seen in L breast. No microcalcifications or adenopathy seen.</td>
<td>Although seen, ultrasound did not help to characterize the lesion.</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>Ill-defined increase in density in L breast with some architectural distortion seen but no calcification.</td>
<td>No lesion identified on ultrasound.</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>Spiculated subareolar mass (1–2 cm) seen in L breast which is consistent with invasive carcinoma.</td>
<td>Ultrasound confirmed hypoechoic irregular lesion consistent with mammographic findings.</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>Spiculated lesion in upper outer quadrant of R breast, consistent with invasive carcinoma. No microcalcifications seen.</td>
<td>ABUS showed a hypoechoic lesion with confirmation of associated abnormal acoustic shadowing.</td>
</tr>
</tbody>
</table>
Each subject had four sets of dual-modality images acquired: cranio-caudal (CC) and medio-lateral oblique (MLO) views for the left and right breasts.

For each of the 58 subjects, the radiologist (QSH) compared the Aceso FFDM images with a predicate device used in her own practice at Groote Schuur Hospital (GE system with Agfa CR detector). Note that she did not have images of the same patient for a side-by-side comparison. There were 12 parameters (Table 1), based on the FDA guidelines that were compared: breast positioning (CC and MLO), exposure (adipose, fibroglandular, and pectoralis), breast compression, image contrast, sharpness, tissue visibility, noise, artifacts, and image quality (www.fda.gov/RegulatoryInformation/Guidances/ucm107552.htm). Each parameter, for each subject, was given one of three scores: −1 was recorded if Aceso was worse than the predicate system; 0 if the two systems were equivalent; and +1 if Aceso was judged to be better than the predicate. In addition, each subject’s breast density was scored according to the Breast Imaging–Reporting and Data System (BI-RADS): 1 = almost entirely fatty; 2 = scattered fibroglandular densities; 3 = heterogeneously dense; and 4 = extremely dense. Finally, the total time that each subject was in the room for image acquisition was recorded.

3. Results

3.1. Phantom testing

The CDMAM phantom (serial number 1809, Version 3.4) was positioned on the breast platform with a 20-mm thickness of polymethylmethacrylate (PMMA) above and below, thus providing a total attenuation equivalent to 50 mm of PMMA or approximately 60 mm of breast tissue. With a W/Al target/filter combination, X-ray tube values of 33 kV and 31 mAs were chosen, based on automatic exposure control values for 50 mm thickness of PMMA, while a mean glandular dose (MGD) of 2.1 mGy was estimated using the method of Dance et al. [38]. Eight consecutive images of CDMAM were acquired, and the resulting DICOM files were fed into the EUREF software package. Fig. 4 illustrates the system performance where, in logarithmic scale, the

![Fig. 4](image1.png)

3.1. Phantom testing

The CDMAM phantom (serial number 1809, Version 3.4) was positioned on the breast platform with a 20-mm thickness of polymethylmethacrylate (PMMA) above and below, thus providing a total attenuation equivalent to 50 mm of PMMA or approximately 60 mm of breast tissue. With a W/Al target/filter combination, X-ray tube values of 33 kV and 31 mAs were chosen, based on automatic exposure control values for 50 mm thickness of PMMA, while a mean glandular dose (MGD) of 2.1 mGy was estimated using the method of Dance et al. [38]. Eight consecutive images of CDMAM were acquired, and the resulting DICOM files were fed into the EUREF software package. Fig. 4 illustrates the system performance where, in logarithmic scale, the

![Fig. 4](image2.png)

3.1. Phantom testing

The CDMAM phantom (serial number 1809, Version 3.4) was positioned on the breast platform with a 20-mm thickness of polymethylmethacrylate (PMMA) above and below, thus providing a total attenuation equivalent to 50 mm of PMMA or approximately 60 mm of breast tissue. With a W/Al target/filter combination, X-ray tube values of 33 kV and 31 mAs were chosen, based on automatic exposure control values for 50 mm thickness of PMMA, while a mean glandular dose (MGD) of 2.1 mGy was estimated using the method of Dance et al. [38]. Eight consecutive images of CDMAM were acquired, and the resulting DICOM files were fed into the EUREF software package. Fig. 4 illustrates the system performance where, in logarithmic scale, the

![Fig. 4](image3.png)

3.1. Phantom testing

The CDMAM phantom (serial number 1809, Version 3.4) was positioned on the breast platform with a 20-mm thickness of polymethylmethacrylate (PMMA) above and below, thus providing a total attenuation equivalent to 50 mm of PMMA or approximately 60 mm of breast tissue. With a W/Al target/filter combination, X-ray tube values of 33 kV and 31 mAs were chosen, based on automatic exposure control values for 50 mm thickness of PMMA, while a mean glandular dose (MGD) of 2.1 mGy was estimated using the method of Dance et al. [38]. Eight consecutive images of CDMAM were acquired, and the resulting DICOM files were fed into the EUREF software package. Fig. 4 illustrates the system performance where, in logarithmic scale, the

![Fig. 4](image4.png)
threshold gold thickness (in μm) is plotted as a function of detail diameter (in mm). The average curve for Aceso may be compared to the EUREF standards of “acceptable” and “achievable” [37].

The CIRS 040GSE ultrasound phantom was located on the breast platform on top of a 2-mm Zerdine sheet, and the ultrasound probe was scanned in the +y direction (see Fig. 3). The template for the targets is shown in Fig. 5(a), while a single slice in the sagittal (x–z) plane of the phantom structures may be seen in Fig. 5(b). Based on the two images in Fig. 5, the resolution in the lateral (x) direction was approximately 2 mm, while the axial (z-axis) resolution was 0.5 mm. The acquisition spacing in the scanning (y) direction was 1 mm. The depth penetration in the axial (z) direction was 80 mm, while the full range of the gray scale (from −9 to +6 dB) could be discerned, as could the hyperechoic mass. The elasticity targets were poorly imaged while those in the far field produced significant artifacts for the 10-kPa elasticity.

3.2. All subjects

The average age for our subjects was 50.4 years (Table 2), with a range of 36 to 73 where the two outliers were patients (all volunteers were aged between 40 and 65). The breast density data for the 58 subjects are illustrated in Fig. 6, where 19 women (33%) were judged to have heterogeneously or extremely dense breasts (BI-RADS 3 and 4). The largest group of 35 women had scattered fibroglandular densities (BI-RADS 2). For all 12 of the FFDM parameters defined in Table 1, Aceso’s performance was judged to be inferior to the predicate system (Table 2). For some of the parameters (e.g., breast positioning for the CC view and noise) the differences were negligible, but for others (e.g., sharpness and tissue visibility) the differences were marked.

The average time spent by the 58 women in the imaging room was 10 min and 57 s (Table 2). The range was 8:50 to 14:55, although there was clearly a training effect for the radiographer because in the latter part of the trial most women spent less than 10 min in the imaging room.

For the seven patients, the radiologist (QSH) recorded her findings for the FFDM and ABUS images generated by Aceso. In addition, the breast density (BI-RADS 1 to 4) was also recorded for each patient (see Table 3). One of the patients (number 3, who had extremely dense tissue) was deemed to have no breast pathology. The radiologist was aware that the other six patients had biopsy-proven cancer, but she did not have access to any prior images.
3.3. Volunteer with dense breast tissue

Three of our subjects had extremely dense breast tissue (Fig. 6), and we feature here a 42-year-old healthy volunteer with BI-RADS 4 and no prior history of breast pathology. Fig. 7 shows an FFDM image for the left medio-lateral oblique (LMLO) view where the radiologist (QSH) confirmed that there was no evidence of breast pathology. The 230 ABUS images were acquired simultaneously to the FFDM image in the sagittal (x–z) plane and may be viewed as a video clip. This animation revealed the brief appearance of a dark well-defined lesion close to the breast platform about half way through the video.

Because the location of the probe in the +y direction is known, a 3D reconstruction of the ABUS data was performed. As seen in Fig. 8, the four views illustrate the co-registration of the FFDM and ABUS images generated by Aceso. This figure was created using the open source 3D Slicer software package (www.slicer.org). Note that the 3D location of the lesion is clearly identified by the crosshairs in the three orthogonal planes of the ABUS image: sagittal, coronal, and horizontal. However, in the FFDM image (bottom right), the lesion is occult, even to the experienced radiologist. Fortunately for this volunteer, who was referred for follow-up evaluation, the lesion was identified as a benign cyst.

3.4. Patient with malignant lesion

Fig. 9 shows an FFDM image of the right medio-lateral oblique (RMLO) view for a 73-year-old patient with a prior history of cancer in the left breast that was treated by lumpectomy (patient number 1 in Table 3). An irregular-shaped mass is clearly visible in the right lower quadrant that was confirmed as malignant on biopsy. The video clip of the ABUS images, acquired at the same time as the FFDM image, illustrated the brief appearance of a large irregularly shaped lesion located mid-way between the breast platform and the upper surface of the breast.

As seen in Fig. 10, the four views illustrate the co-registration of the FFDM and ABUS images generated by Aceso. Note that the 3D location of the lesion is clearly identified by the crosshairs in the three orthogonal planes of the ABUS image. This large irregularly-shaped malignant lesion is co-registered in the horizontal plane of the FFDM image (bottom right).

4. Discussion

The purpose of this study was to test our dual-modality Aceso system that combines FFDM and ABUS in a single platform and, in particular, to evaluate how it performed in a clinical setting. All testing was conducted at the UCT’s Lung Institute and took place over a period of 4 weeks, with a maximum of six women seen on a single day. On average, image acquisition took less than 11 min per subject (Table 2), with this time being less than 10 min in the second half of the study. Aceso used breast compressions up to a maximum of 50 Newton for the combined FFDM and ABUS images, which is considerably lower than the 100 to 150 Newton used in most FFDM systems. For those subjects who had previously had a mammogram, the majority provided positive subjective feedback, while among the negative comments mentioned was that the ultrasound gel used to acoustically couple the breasts to the TPX platform had to be wiped clean after the study.

The quality of the FFDM images may be gauged from Fig. 4, Table 2, and Figs. 7 and 9. As seen in Fig. 4, the curve for Aceso falls almost exactly on the acceptable curve published by EURAP [37]. However, as highlighted in Table 2, Aceso’s performance was judged to be inferior to the predicate device for all 12 of the FDA parameters based on the clinical images. We believe that there are two primary reasons for this poor performance. First, in an effort to keep the radiation exposure to the subjects as low as possible, we used a relatively low MGD. By using a higher but clinically acceptable dose in the region of 3.0 mGy, there would have been better exposure, thus leading to improved visualization of the adipose and fibro glandular tissues and the pectoral muscles, as well as better image contrast (cf. Table 2). Second, we had not optimized the postprocessing algorithm for the captured images at the time they were read by the radiologist (QSH), and this led to poor scores for the sharpness and tissue visibility comparisons (Table 2). It should be noted that Figs. 7(a) and 9(a) illustrate the images that were read by the radiologist (QSH), whereas Figs. 7(b) and 9(b) are images to which the optimized postprocessing algorithm has been applied. The improvement in the quality of the images is clearly visible.

The quality of the ABUS images may be gauged from Figs. 5, 8, and 10. When the phantom data of Fig. 5(b) are compared with the template in Fig. 5(a), Aceso is able to image most, but not all of the targets. While the depth penetration of 80 mm is sufficient for imaging all breast sizes and the axial (z-axis) resolution of 0.5 mm is acceptable, the lateral (x-axis) resolution of 2 mm is too coarse to detect small lesions. The “spreading” of the signal in the lateral direction is a function of the ultrasound transducer element pitch (1 mm), the centre frequency (3.5 MHz), and the refraction caused by the 6-mm thick TPX platform resulting from a mismatch in the speed of sound [39].

The lateral spreading of the ultrasound signals is also evident in the sagittal plane views of the healthy volunteer with dense breast tissue (Fig. 8) and the patient with a malignant lesion (Fig. 10). Aside from the lateral resolution, there are two other shortcomings with the ABUS images: first, since the ultrasound transducer was only 128 mm in length, it was not long enough to image large breasts with a single scan; and second, there is a “peripheral volume” problem, where the tissue on the periphery of the breast (laterally, medially, and anteriorly under the nipple) is not in contact with the TPX platform. This latter problem is particularly evident in the lower two images of Fig. 10, where the ABUS image in the horizontal plane has a significantly smaller footprint than the FFDM image in the same plane, where both images are reproduced to the same scale.

As seen in Table 3, Aceso’s FFDM modality was used by the radiologist (QSH) to successfully identify the cancers in all six women with biopsy-proven malignancies. In four of these six patients, Aceso’s ABUS images provided complimentary information, confirming the diagnosis and helping to characterize the lesion. For the one referred patient who had no pathology but very dense breasts (patient number 3), the FFDM images revealed no discrete spiculations or architectural distortions and no malignant micro-calculations, while the ABUS images showed normal tissue with no visible solid or cystic masses. These findings suggest that Aceso has potential to be used in a screening environment, although the image quality issues do still need to be addressed.

In order to improve the quality of the ABUS images, it will be necessary to implement three strategies: (a) increase the lateral resolution by building a transducer with a smaller pitch (0.2 to 0.5 mm) and a higher centre frequency (at least 6.5 MHz); (b) increase the length of the transducer so that it is closer in length to the X-ray transducer (approaching 200 mm); and (c) solve the peripheral volume problem by introducing a new system to acoustically couple more of the breast to the TPX platform. We are at present addressing each of these design challenges and will be testing a new version of Aceso in a clinical trial in the near future.

Although digital mammography is still recognized as the gold standard when screening for breast cancer, it is also acknowledged that when a woman has dense breast tissue, lesions may be mammographically occult. These false negative findings can have devastating consequences for the women concerned because a later diagnosis will often lead to more expensive treatment options and a poor prognosis. As seen in Figs. 7 and 8, the Aceso system, which needs just 10 min to acquire a full set of FFDM and ABUS images, was able to successfully detect and locate a mammographically occult lesion in a woman with dense breast tissue. We believe that Aceso and its dual-modality technology have shown promise as a potential screening device.

Acknowledgments

We acknowledge the grant funding from the National Institutes of Health (R21 CA101705) for the early development of Aceso and the
Cancer Association of South Africa that supported the clinical trial. We are also grateful to Natasha Steele for recruitment of the volunteers, Nafeesah Karriem who served as the clinical radiographer, Chipo Chimhundu who assisted with gathering informed consent, radiologist Dr Andrew du Toit, and obstetrician Dr Helmut Schillinger who both provided feedback on the clinical images.

References